Prevenire la corrosione galvanica negli accoppiamenti flangiati

Il meccanismo della corrosione galvanica si produce secondo un processo ad umido e si innesca quando due materiali, aventi un diverso valore di nobiltà (oppure due parti dello stesso materiale esposte a condizioni differenti), vengono posti a diretto contatto (formando un accoppiamento galvanico), in presenza su entrambi di un terzo elemento (detto “elettrolita”).

Si viene a formare una cella galvanica in cortocircuito (detta macrocoppia) nella quale gli elettrodi sono costituiti dai due materiali accoppiati. Si genera un flusso di elettroni dal materiale meno nobile (avente potenziale minore), denominato anodo (o polo negativo) che si ossida, verso quello più nobile avente potenziale maggiore, denominato catodo (o polo positivo), dove avviene la riduzione dei cationi, che può rivestirsi di strati metallici. Le reazioni che avvengono durante il processo di corrosione sono tutte redox (dall’inglese reduction e oxidation). Per convenzione, il verso della corrente elettrica è assunto opposto al flusso degli elettroni, per cui si ha circolazione di una corrente continua di intensità i dalla zona catodica a quella anodica; la stessa corrente circola in verso opposto nell’elettrolita, trasportata dagli ioni disciolti.

I metalli meno nobili (per esempio zinco, ferro, nichel) presentano una maggiore tendenza a corrodersi rispetto ai metalli più nobili (per esempio rame, argento, acciaio inossidabile), per cui mettendo a contatto un metallo meno nobile e un metallo più nobile sarà il metallo meno nobile a corrodersi (fungendo da anodo)e la corrosione risulterà accelerata, invece il metallo più nobile rimarrà intatto a causa di un fenomeno di protezione.

I concetti che stanno alla base della corrosione per contatto galvanico di metalli possono essere estesi anche agli accoppiamenti di metalli e leghe con materiali da loro differenti, quali ossidi e solfuri, purché dotati di conducibilità elettronica (per esempio magnetite, solfuri di rame e ferro, grafite).

L’entità della corrosione dipende:

  • dalla differenza di potenziale che si crea tra i due elementi, che è tanto più grande quanto più distanti sono gli elementi stessi nella scala dei potenziali standard (o scala galvanica);
  • dalla quantità di ossigeno presente nell’ambiente;
  • dal rapporto tra la superficie complessiva dei due metalli e quella del metallo meno nobile.

La nobiltà relativa dei diversi materiali metallici tiene conto di fattori cinetici, per cui non corrisponde ai valori termodinamici riportati nella serie elettrochimica dei potenziali di equilibrio di ossidoriduzione per le reazioni di ionizzazione dei vari metalli. È necessario, infatti, conoscere anche i valori dei potenziali che i diversi materiali assumono una volta immersi in ambienti aggressivi “reali”, stabilendo in questo modo delle serie galvaniche “pratiche”, relative al comportamento dei vari materiali metallici qualora vengano accoppiati nei differenti ambienti in esame. La nobiltà di un materiale metallico può infatti variare in un ampio intervallo di potenziale in dipendenza delle condizioni sia dell’ambiente (composizione, valore di pH, temperatura, presenza o assenza di condizioni di scambio termico, agitazione) che del materiale metallico (passività a seguito della presenza di film superficiali protettivi o attività quando la superficie metallica è direttamente a contatto con il mezzo aggressivo).

La realizzazione di accoppiamenti di materiali prossimi tra loro nelle serie galvaniche è quindi considerata favorevole, risultando questi materiali tra loro “galvanicamente compatibili”, mentre è da evitare l’impiego di materiali tra loro lontani nella serie galvanica d’interesse.

Nel processo di corrosione per contatto, in qualche caso può verificarsi un’inversione di polarità della coppia, per cui il materiale inizialmente si comporta da catodo e viceversa. Un esempio classico è quello della coppia Zn-Fe in acque naturali a temperatura elevata; lo zinco, metallo meno nobile e inizialmente anodico rispetto al ferro, a seguito della formazione di un film passivante stabile di ossido di zinco dotato di conducibilità elettronica, assumerà nel tempo un comportamento catodico rispetto al ferro. Tra i fattori che regolano la corrosione per contatto va ricordata la conducibilità elettrica dell’ambiente aggressivo. Infatti, nei mezzi dotati di elevata conducibilità l’attacco è intenso e si fa sentire a distanze elevate, mentre in ambienti con alta resistività la corrosione risulta limitata alla zona anodica in prossimità della giunzione con l’area catodica. Per tale motivo questo tipo di corrosione risulta particolarmente grave in acque di mare ma non in acque dolci che hanno una conducibilità di almeno due ordini di grandezza più bassa. Un altro fattore importante nella regolazione della corrosione galvanica è rappresentato dal rapporto tra le aree catodiche e quelle anodiche; le condizioni più sfavorevoli si realizzano quando l’area anodica è piccola rispetto a quella catodica, in quanto l’attacco corrosivo si concentra sull’area limitata. Un esempio tipico può essere l’impiego di elementi di giunzione in ferro (chiodi o viti) su strutture in rame o (come succede spesso nelle costruzioni idrauliche) bulloni in acciaio inox su tubazioni in acciaio al carbonio o in ghisa.

La prevenzione o il contenimento della corrosione per contatto possono essere realizzati evitando il contatto tra materiali di nobiltà molto diversa o isolando tra loro, ove possibile, materiali metallici differenti. Anche l’impiego di rivestimenti protettivi o di inibitori può ridurre il rischio di corrosione per contatto. Qualora sia impossibile evitare l’impiego di una coppia di materiali metallici tra loro non compatibili, si può ampliare la catena galvanica, introducendo un terzo metallo, meno nobile di quelli costituenti la coppia, agente quindi come anodo sacrificale.

La soluzione migliore per la prevenzione ed eliminazione della corrosione galvanica è l’installazione dei “kit isolamento flange” che prevengono il processo di corrosione galvanica garantendo l’interruzione della continuità elettrica tra flange attigue ed isolando ciascun componente senza interferire con il corretto serraggio. Ogni kit si compone di una guarnizione realizzata in materiale isolante idonea per lo specifico impiego e di una coppia di guaine complete di rondelle metalliche per ciascun bullone. Le guaine vanno inserite nel foro dei bulloni e garantiscono l’isolamento del tirante, dei dadi e delle rondelle.